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Abstract
We study motion of charged test particles, or electrogeodesics, in the Kerr–Newman–
(anti-)de Sitter spacetime. We focus on the equatorial plane and the axis of symmetry
where the analysis is considerably simpler. The electric charge opens up the possibility
of new types of trajectories, particularly stationary pointswhere the particle can remain
indefinitely. It also influences the stability of the orbits, which can be interesting from
the point of view of observations.We review the basic properties of the spacetime—the
structure of its horizons, the extremal cases, the possibility of over-extreme rotation,
regions admitting closed timelike curves, and the turnaround radius, among other.

Keywords Kerr–Newman–(anti-)de Sitter · Extreme horizons · Electrogeodesics ·
Effective potential

1 Introduction

Since the beginnings of general relativity, study of the geodetic structure has been
used extensively to reveal the physical interpretation of spacetimes. Indeed, already
the Schwarzschild solution requires us to follow themotion of test particles to ascertain
that the apparent singularity of the surface located at r = 2M is due to our poor choice
of coordinates and can be covered by a smooth coordinate patch. The Schwarzschild
solution describing a single, static black hole that inhabits the vacuum of an otherwise
empty universe is obviously not very suitable when trying to describe real astrophysi-
cal objects. It is of interest that if we include electric charge, providing thus hair for the
black hole, its causal structure and the character of its singularity change dramatically.
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Themost significant step in this direction, however,was the addition of rotation byKerr
in 1963, yielding the stationary Kerr black hole of a geodesic structure similar to the
charged solution. A succession of black-hole spacetimes have been introduced [1] and
analyzed in detail from the point of view of motion of test particles—Schwarzschild,
Reissner–Nordström, Kerr, Kerr–Newman [2–4], and their analogues including either
a positive or a negative cosmological constant, which drastically changes the asymp-
totic properties of the solutions. Geodesics have also been discussed in some related
spacetimes such as Kerr–Newman–Taub-NUT [5] and rotating, charged black-hole
spacetime in f (R) gravity [6].

In this paper we study the most general member of this black-hole family—the
Kerr–Newman–(anti-)de Sitter spacetime. Unlike the other black-hole solutions in the
family, the spacetime can feature a triple horizon depending on the particular set of its
parameters. We include both null and timelike trajectories, which have already been
discussed in [6], but we consider particles carrying a non-zero charge which interact
with the spacetime not only gravitationally but also through the electromagnetic force.
The charge enables the existence of new families of orbits, particularly static ones,
which—in principle—can be observed, constraining thus the parameters of the central
black hole.

The case of Λ = 0 shall not be discussed in this work as the properties of the
Kerr–Newman solution are well known and its electrogeodesics have already been
examined thoroughly [7]. We thus focus on the KN(a)dS solution, starting with a
general discussion of its properties in Sect. 2. The spacetime has a richer structure
of extreme configurations than simpler solutions and we discuss the possible cases
in Sect. 3. We look at what happens with the horizons if we perturb the parameters
of the black hole and we compare the configurations to the simpler Kerr black holes.
We then examine the interesting trajectories corresponding to closed time-like curves
in the brief Sect. 4. Finally, the most extensive Sect. 5 is devoted to an analysis of
electrogeodesics. It discusses the integrals of motion, possible static positions of test
particles, and general motion in the equatorial plane and along the axis, introducing
an effective potential. We also touch on the problem of the turnaround radii.

2 The spacetime

The spacetime we shall be investigating is the Kerr–Newman–(anti-)de Sitter solution
(KN(a)dS)with the standardBoyer–Lindquist-type coordinates [8,9]. The line element
reads

ds2 = − Δr

Ξ2ρ2

(
dt − a sin2 θ dφ

)2 + ρ2

Δr
dr2 + ρ2

Δθ

dθ2

+ Δθ sin2 θ

Ξ2ρ2

(
adt − (r2 + a2)dφ

)2
, (1)

where

ρ2 = r2 + a2 cos2 θ , (2)
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Δr = (r2 + a2)

(
1 − 1

3
Λr2

)
− 2mr + q2 , (3)

Δθ = 1 + 1

3
Λa2 cos2 θ , (4)

Ξ = 1 + 1

3
Λa2 . (5)

This spacetime describes a rotating electrically-charged black hole withmassm, angu-
larmomentumper unit energy a and charge q in a background universewith a non-zero
cosmological constant Λ. The orientation of the φ coordinate is chosen in such a way
that angular momentum a is positive. The spacetime has a ring singularity located at
r = 0, θ = π/2. It is a stationary and axially-symmetrical electrovacuum solution of
the Einstein–Maxwell equations with the four-potential 1

A = − qr

Ξρ2

(
dt − a sin2 θ dφ

)
. (6)

In order to retain the Lorentzian signature of the metric for all θ ∈ [0, π ], we require
1

3
Λa2 > −1 ⇔ Ξ > 0. (7)

Then, Δθ(θ) is always positive. If Λ > 0, this condition is irrelevant as it is fulfilled
for any a.

The solution can contain up to four distinct horizons, which can be found as the
roots of Δr (r). Aside from the inner and outer black hole horizons RI and RO, which
can be found in spacetimes of the Kerr and Reissner–Nordström families even for
a vanishing Λ, for a positive Λ two so-called cosmological horizons RC− and RC+
appear. If all four horizons are present, their radii fulfill

RC− < 0 < RI < RO < RC+. (8)

However, for a particular combination of the spacetime’s parameters, certain horizons
may merge, leading to extremal scenarios, or disappear altogether.

Furthermore, due to the presence of the cosmological term, this solution is not
asymptotically flat, unlike the simpler black hole models. Current observations [10]
suggest that we live in a universe with a positive cosmological parameter

ΩΛ ≡ Λc2

3H2
0

= 0.6889 ± 0.0056, (9)

where H0 = (67.66 ± 0.42) km s−1 Mpc−1 is the present-day Hubble parameter.
From there, we get

Λ = (1.11 ± 0.02) 10−52 m−2. (10)

1 There is a typo in [9]: the inclusion of a non-zero cosmological constant in the Kerr–Newman solution
does require the four-potential to be divided by Ξ(Λ).

123



  156 Page 4 of 22 J. Veselý , M. Žofka

However, the most massive astrophysical black holes ever observed have masses of
the order of [11]

MBH
max = 1010M� ≈ 1.5 × 1013 m. (11)

As astrophysical black holes satisfy a � m, then

Λa2 � Λm2 � Λ
(
MBH

max

)2 ≈ 2.5 × 10−26 � 1 (12)

and Λ can therefore be treated locally as a perturbation of the Kerr–Newman metric.
For it to have a measurable effect, we need Λr2 > 1, which occurs for sufficiently
large radii.

Unlike the standard Euclidean spherical coordinates, the Boyer–Lindquist radial
coordinate r is extended into negative values. These are hidden behind the black hole
horizons (if there are any) within the inner region of the black hole. It is natural for us
to assume that we live in the outer region, as a static observer in the area with negative
r would be, among other things, always subjected to a naked singularity. We shall,
therefore, place greater emphasis on positive values of r .

3 Extremal horizons

Before we move on to study electrogeodesics, we list some interesting properties of
the extremal horizons possibly present in the KN(a)dS spacetimes. The correspond-
ing spacetimes have a simpler causal structure and the number of their independent
physical parameters is reduced, making thus the description of an extremal black hole
simpler than that of a non-extremal black hole or a naked singularity. Furthermore, the
proper distance from a point outside of a horizon to the horizon is finite for a simple
horizon while it diverges for double and triple horizons. Another thing to note is that
while horizon temperature of a simple horizon is non-zero and finite, temperatures
of double and triple horizons vanish [12]. Extremality of black holes is due to the
merging of their originally separate horizons. Therefore, in order to construct extreme
black holes out of the KN(a)dS spacetime, we first need to analyze the horizons, which
are the roots of Δr (r)—a polynomial of degree four. For Λ > 0, it has at least one
positive and at least one negative root while for Λ < 0 there may be no real roots. The
higher the multiplicity of the horizons, the less independent parameters; for example,
with a given positive cosmological constant2 and a single triple horizon, there is just
one more physical parameter, which may be taken to be the mass of the black hole.
However, even these parameters may need to satisfy certain inequalities to represent
physically acceptable spacetimes.

We describe the causal structure of the spacetime as, e.g., (−1 ⊕ 2 + 1−), telling
us there is a single horizon at a negative r (r = 0 is denoted ‘⊕’), followed by a double
and a single horizons at positive r ’s. If a region between two neighboring horizons
is stationary we write ‘+’ between the corresponding numbers, or we write ‘−’ if
it is non-stationary (the region around r = 0 is always stationary, whence ‘⊕’) and

2 We generally prefer to keep Λ as a free parameter because, from the astrophysical point of view, its value
is known and fixed for all black holes.
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Table 1 The three extremal families in KN(a)dS with a horizon of multiplicity two

Scenario (−1 ⊕ 2 + 1−) (−1 ⊕ 1 − 2−) (⊕2+)

Parameters Λ > 0 Λ > 0 Λ < 0

a2 ∈
[
0, 21−12

√
3

Λ

]
a2 ∈

[
0, 21−12

√
3

Λ

]
a2 ∈

[
0, 3

|Λ|
)

q2 ∈
[
0, 9−42a2Λ+a4Λ2

36Λ

]
q2 ∈

[
0, 9−42a2Λ+a4Λ2

36Λ

]
q2 ∈ [0, ∞)

m = Λα2+β−
3 m = Λα2−β+

3 m = Λα2+β−
3

Horizons R1− = −α+ − β− R1− = −α− − β+ R2 = β−
R2 = β− R1+ = +α− − β+
R1+ = +α+ − β− R2 = β+

α± =
√

1
3Λ

(
6 − 2a2Λ ±

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)

β± =
√

1
6Λ

(
3 − a2Λ ±

√
9 − 42a2Λ + a4Λ2 − 36Λq2

)

the same applies to the asymptotic regions. Apart from the doubly degenerate case
discussed below, the solution admits three distinct families of extremal spacetimes
containing one horizon of multiplicity two. The required parameter combinations are
listed in Table 1, along with the positions of the horizons.

The most interesting case is (−1 ⊕ 3−), the causal structure of which is shown in
Fig. 1. This is a spacetime containing a doubly degenerate horizon, which can only
occur in the present family of spacetimes if none of its parametersm, a, q,Λ vanishes.
If we choose Λ andm as our parameters, then for the single horizon located at r = R1
and the triple horizon at r = R3 we can write

R1 = −3R3, R3 = 3

√
3

4

m

Λ
, (13)

while

Λ > 0, m2 ∈
[
16(26

√
3 − 45)

3Λ
,

2

9Λ

]
, (14)

and

a2 = 3

Λ
− 6R2

3, q2 = ΛR4
3 − a2. (15)

With a vanishing cosmological constant, extremal spacetimes from the Kerr(–
Newman) orReissner–Nordströmfamilies form theboundarybetween the two-horizon
scenarios and naked singularities with no horizons. Extremal scenarios play a similar
role for a non-vanishing Λ as well, which can be shown by computing the deriva-
tives of Δr with respect to the spacetime parameters. We find that as we change the
parameters of the metric a double root of Δr either splits into two separate ones or
disappears altogether while a triple root always becomes a single root. The results of
parametric perturbations can be found in Table 2, using the established notation of
horizon configurations.
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(a)

(b)
Fig. 1 Conformal diagrams of a scenario (−1⊕3−) black hole for a given θ . The ’+’ and ’−’ signs denote
the sign of Δr , i.e., whether the given area is stationary or dynamical, respectively. The area with r < 0
is grayed out. Maximal analytical extension is achieved by joining multiple copies of diagram b along the
lines with r = 0

Table 2 Perturbations of extremal horizons due to a change in Δr at the location of the extremal horizon.
There, Δr increases with increasing a and |q| and with decreasing Λ and m

Extremal Increased Δr Decreased Δr

(−1 ⊕ 3−) (−1 ⊕ 1−) (−1 ⊕ 1−)

(−1 ⊕ 2 + 1−) (−1 ⊕ 1−) (−1 ⊕ 1 − 1 + 1−)

(−1 ⊕ 1 − 2−) (−1 ⊕ 1 − 1 + 1−) (−1 ⊕ 1−)

( ⊕2+) ( ⊕) ( ⊕1 − 1+)
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Fig. 2 The dependence of a2/m2 on x ≡ Λa2 for the permitted values of x for the Kerr-like extremal black
holes of the Kerr–(anti-)de Sitter family

A commonly used model for astrophysical black holes is the Kerr spacetime [13].
For that spacetime to represent an actual black hole it must hold that m ≥ a. Obser-
vations of astrophysical black holes seem to agree with this fact so far, even though
there are black holes nearing extremality [14–16]. The Kerr metric, however, does not
include the cosmological constant. It may, therefore, be of astrophysical relevance to
see if real black holes can satisfy m < a by adding Λ to the model.

The extremal KN(a)dS scenarios corresponding to the Kerr spacetime are (⊕2+)

and (−1⊕ 2+ 1−), as the other ones are naked. Astrophysically relevant is the latter
scenario, as it includes a positive Λ in accordance with current observations, while
the former includes a negative Λ. Conveniently, the expression for mass m(Λ, a, q)

is the same in both cases, see Table 1. We want to examine the highest possible
specific angular momentum of the extremal black hole. To this end, we introduce a
new parametrization x ≡ Λa2 and y ≡ Λq2, writing

a2

m2 = 486x(
3−x−√

9 − 42x + x2 − 36y
) (

6−2x+√
9 − 42x + x2 − 36y

)2 , (16)

where for (−1 ⊕ 2 + 1−) it holds that x ∈
[
0, 21 − 12

√
3
]
and y ∈

[
0, 9−42x+x2

36

]
,

while for (⊕2+) we have x ∈ (−3, 0] with y ∈ ( − ∞, 0 ]. The ratio a2/m2 is a
decreasing function of y within the entire domain for (−1 ⊕ 2 + 1−) while it is an
increasing function for (⊕2+) so in order to maximize it, we must put y = 0 in both
cases, restricting thus the spacetime to the K(a)dS. The resulting ratio for the entire
allowed interval x ∈ (−3, 21 − 12

√
3] is plotted in Fig. 2.

Regarding the astrophysically relevant scenario (−1 ⊕ 2 + 1−), from the right part
of the chart we can see that an extremal black hole necessarily is over-rotating for any
permitted value of x > 0. Thus the highest angular momentum of a charged rotating
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black hole with a cosmological constant is

lim
a→amax

a2

m2 = 3

16
(3 + 2

√
3) ≈ 1.21, (17)

with a2max = (21− 12
√
3)/Λ, identical to the KdS spacetime, see [17]. Astrophysical

black holes thus can satisfy a > m without being naked singularities, but do they in
reality?

Considering the cosmological constant of our universe (10), we can see that (omit-
ting the considerably smaller error intervals)

amax

∣∣∣
Λ=1.11×10−52 m−2

≈ 4.4 × 1025 m (18)

with the corresponding mass

m ≈ 4.0 × 1025 m ≈ 2.7 × 1022M�. (19)

However, the most massive black holes ever observed have masses of the order of
MBH

max = 1010M�, (11), which is well below our result computed using amax by 12
orders of magnitude. For these black holes, expressing a from the formula for m and
using the measured value of Λ, q = 0 and m = MBH

max, we obtain aBHmax practically
equal to MBH

max. As expected, aBHmax is smaller than amax by 12 orders, and we can
thus effectively consider the limit x → 0 for any observed black hole. Astrophysical
black holes, therefore, satisfy m ≥ a, as is valid for black holes of the Kerr family. A
theoretical deviation from this condition is negligible and would require very precise
observations in order to be measured. However, even though none has been found
yet, one should never exclude the possibility of the existence of black holes massive
enough to be actually able to satisfy m < a...

In the (⊕2+) casewithΛ < 0, the extremal black holes actually satisfy a2/m2 < 1,
see Fig. 2. Spin up the black hole as much as possible to obtain

lim
a2→−3/Λ

a2

m2 = 27

64
≈ 0.42, (20)

which, perhaps paradoxically, represents the lowest value possible for this type of
extremal black holes.

4 Closed timelike curves

In the Kerr solution closed timelike curves (CTC’s) can be found only in the part of the
spacetime with a negative r coordinate. With the addition of the black hole’s charge
in the Kerr–Newman solution, however, they also appear in the area with positive r
around the singularity, which is true for the KN(a)dS as well. It is of interest that
for the general KN(a)dS it is possible to prove analytically that they must lie below
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the innermost black hole horizon (even below the inner ergosphere), hidden thus
from outside observers, which is rather reassuring since these paths allow observers
following them to travel backwards in time, possibly violating causality. Fortunately,
according to the chronological censorship hypothesis nature seems to have its way
of disarming these curves (see, e.g., [18,19]), which is indeed the case here. A proof
limited to the equatorial plane of the Kerr–Newman spacetime can be found in [20].
Our spacetime, however, is more general and we admit completely general motion of
the test particles.

CTC’s are located in the area where gφφ < 0. Looking at the expression for gφφ ,

gφφ(r , θ) = sin2 θ

Ξ2ρ2(r , θ)

(
Ξr4 + Ξa2(1 + cos2 θ)r2

+ 2ma2(1 − cos2 θ)r + Ξa4 cos2 θ + a2q2(cos2 θ − 1)
)
, (21)

this happens if and only if

G(r , θ) ≡ Ξ2ρ2(r , θ)

sin2 θ
gφφ(r , θ) = Ξr4 + Ξa2(1 + cos2 θ)r2

+ 2ma2(1 − cos2 θ)r + Ξa4 cos2 θ + a2q2(cos2 θ − 1) (22)

is also negative. Since Ξ > 0 (7) it is clear that

∂G(r , θ)

∂r
= 4Ξr3 + 2Ξa2(1 + cos2 θ)r + 2ma2(1 − cos2 θ) (23)

is positive everywhere for r > 0, which means that G(r , θ) increases monotonically
with increasing r > 0. Because the function is continuous, there is at most one positive
root for a given θ , provided that for this θ the function was negative at r = 0 in the
first place,

G(r = 0, θ) = Ξa4 cos2 θ + a2q2(cos2 θ − 1). (24)

Take note that because of the presence of 1/ρ2, gφφ actually diverges at the singularity,
but the sign is nevertheless given by the sign of G.

Hence, to see that CTC’s indeed lie below the inner ergosphere (defined by gtt > 0)
it suffices to show that at its boundary (i.e., r̄(θ) for which gtt (r̄ , θ) = 0), the function
G(r̄ , θ) is non-negative. One could do this by expressing m from

gtt (r̄ , θ) = 1

3Ξ2ρ2(r̄ , θ)

(
Λr̄4 + (Λa2 − 3)r̄2 + 6mr̄ − 3q2

+Λa4(1 − cos2 θ) cos2 θ − 3a2 cos2 θ
)

= 0 (25)

and inserting it into (22) to obtain

G(r̄ , θ) = ρ2(r̄ , θ)Δθ (θ)
(
r̄2 + a2 (2 − cos2 θ)

)
, (26)

which is manifestly non-negative for ∀ θ (recall that Δθ > 0).
Take note that for certain values of the parameters in the metric both the black-hole

horizons and the ergosphere may vanish. In such a case an external observer could
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see both the singularity and the CTC’s. For a discussion of some special families
of CTC trajectories in naked-singularity spacetimes, see [21] for Kerr and [22] for
Kerr–Newman. If we take seriously the cosmic censorship hypothesis and discard
the naked-singularity class of KN(a)dS spacetimes, then we automatically also have
chronology protection here since the CTC’s are always below the black-hole horizon.

5 Electrogeodesics

To explore the physics of the KN(a)dS solution from a different point of view, we now
turn our attention to the study of motion of test particles in the field generated by the
black hole. Since the spacetime carries an electric charge it is natural to allow both
neutral and charged test particles alike. We focus on some cases of particular interest,
such as static points or circular orbits, using a Lagrangian density of the form [23]

L = 1

2
gμν ẋ

μ ẋν + κ ẋμAμ, (27)

where κ is the particle’s charge-to-mass ratio and dot denotes derivative with respect
to the affine parameter.

With the coordinate time t and angle φ being cyclic we immediately have two
conserved quantities

− E ≡ ∂L
∂ ṫ

= gtt ṫ + gtφφ̇ + κAt , (28)

L ≡ ∂L
∂φ̇

= gtφ ṫ + gφφφ̇ + κAφ. (29)

In analogy with asymptotically flat spacetimes, we shall call E the particle’s energy
and L its angular momentum parallel to the axis of rotation of the black hole although
the studied spacetime is not asymptotically flat and the interpretation of the constants
is not clear. We can further use the Hamilton–Jacobi approach, yielding a separated
equation and the analogue of the Carter constant

−δa2 cos2 θ + Δθ(θ)
(
Θ ′(θ)

)2 + Ξ2

Δθ(θ) sin2 θ

(
L − Ea sin2 θ

)2 =

= δr2 − Δr (r)
(
R′(r)

)2 + Ξ2

Δr (r)

(
La − E(a2 + r2) + r

Ξ
qκ

)2 ≡ K , (30)

where Θ(θ) and R(r) are separated components of the action and δ is the used nor-
malization of the four-velocity—massive particles have δ = −1 and photons have
δ = κ = 0. This generalizes the result for the simpler black holes discussed in [7,24].
As we shall deal with particles moving along the axis where K |θ=0 = −δa2 and
within the equatorial plane with K |θ=π/2 = Ξ2 (aE − L)2, the Carter constant does
not contain any information additional to the above two integrals of motion.
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5.1 The static case

First, we shall investigate particles static in the used coordinate system, with ẋ i = 0.
This can only happen at certain locations that must clearly exhibit some symmetry
and we thus consider the equatorial plane and the axis where the only nontrivial
electrogeodesic equation is the one for r̈ , imposing conditions on the position of static
particles.

On the axis, we have a single remaining equation of motion

[
Λsr7 − κqΛr6 + 3Λa2sr5 − 3(ms − κq)r4 + 3

(
(a4Λ + q2)s − 2κqm

)
r3

+κq(a4Λ + 3q2)r2 + a2
(
(a4Λ + 3q2)s + 6κqm

)
r

+3a2
(
a2ms − κq(a2 + q2)

) ][
(a2 + r2)3s

]−1 = 0 (31)

with

s =
√

Δr (r)

ρ2(r , θ = 0)
. (32)

All particles static on the spacetime’s axis in the used coordinate system are zero
angular momentum observers, which is a coordinate-independent covariant staticity
condition. Finding the static positions for a given particle in a given spacetime is a
matter of numerical computations. However, an analytical result can be obtained if
we instead look for a properly-charged particle that would remain still at a given r in
a given spacetime, yielding

κ = −Λr5 + 2a2Λr3 − 3mr2 + (a4Λ + 3q2)r + 3a2m

3q(r + a)(r − a)s
. (33)

For a non-vanishing a, this relation suggests there are two special locations on the axis:
for r = ±a, the terms with κ in (31) vanish, and the rest of the equation is remarkably
reduced to

Λ = −3

4

q2

a4
. (34)

If the spacetime’s parameters fulfill this condition and if r = ±a is in the stationary
area, any particle can remain at rest there regardless of its charge. Comparing with
(7), we obtain a rather reasonable requirement

q2 < 4a2. (35)

Whether r = ±a is in the stationary area of the spacetime, as required by our ansatz,
is given by the sign of Δr (r = ±a) with (34) plugged in.

The negative solution is always in the stationary area, while the positive one further
requires

m <
4a2 + 3q2

4a
. (36)
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The particles at r = ±a cannot be held in place by either electromagnetism (as
the particles stay in place regardless of their charge) or a repulsive cosmological
constant (as the required negative Λ is actually attractive) in an equilibrium with
gravity. However, it can be shown that the two particles are never shielded by a horizon
from the singularity, which thus acts as a naked singularity for them. This is in accord
with the fact that naked singularities produce pockets of effectively repulsive gravity
pushing the test particles away [25,26].

For static positions in the equatorial plane, we find instead

Δr (r)

r4s̃
(
Δr (r) − a2

)
[
Λs̃r5 − qκΛr4 −

(
3ms̃ + qκ(a2Λ − 3)

)
r2

+3q(qs̃ − 2κm)r + 3q3κ
]

= 0 (37)

with

s̃ =
√

Δr (r) − a2

ρ2(r , θ = π/2)
. (38)

Again, instead of solving the above equation for r numerically, we can find the charge
required to keep the particle static (this can only occur outside of the ergosphere)

κ = −Λr4 − 3mr + 3q2

3qr s̃
. (39)

Although these particles do not have a vanishing angular momentum in general, this
can happen with an additional condition on the spacetime parameters, namely 2Λr3+
Λa2r + 3m = 0.

5.2 Motion in the equatorial plane

Wefirst focus on stationary circular orbits of bothmassive particles and photons before
introducing an effective potential guiding the test particles around the black hole.With
a constant angular velocity and no motion in the radial and axial directions, we are left
with a single non-trivial equation of motion and the normalization of the four-velocity.
Introducing

Ω ≡ dφ

dt
= φ̇

ṫ
, (40)

these then reduce to an expression for ṫ

ṫ = 3Ξqκr(aΩ − 1)

(Λr4 − 3mr + 3q2)(aΩ − 1)2 + 3r4Ω2 (41)
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and a single algebraic equation of degree 4 for Ω

Ω4
[
9a2q2

(
a4 + 2a2r2 + r4 − a2Δr

)
κ2 + 3(2Λa2 + 3)r8 − 18ma2r5

+18a2q2r4 + a4P
]

− Ω3
[
18aq2

(
2a4 + 3a2r2 + r4 − 2a2Δr

)
κ2

+4a
(
3Λr8 − 9mr5 + 9q2r4 + a2P

) ]
+ Ω2

[
6
(
Λr8 − 3mr5 + 3q2r4 + a2P

)

+9q2
(
6a4 + 6a2r2 + r4 − 6a2Δr

)
κ2

]
− Ω

[
18aq2

(
2a2 + r2 − 2Δr

)
κ2

+4aP
]

+
[
9q2

(
a2 − Δr

)
κ2 + P

]
= 0 (42)

with
P = Λ2r8 − 6Λmr5 + 6Λq2r4 + 9m2r2 − 18mq2r + 9q4. (43)

While φ̇ and ṫ are affected by the sign of the particle’s charge κ ,Ω is independent of it
since there are no odd powers of κ in the above equation. Moreover, although we can
have up to four different real values of Ω , the corresponding ṫ may not necessarily be
positive, which further reduces the number of physical solutions. There are regions
admitting different numbers of physical solutions, both due to the number of real roots
of (42) and the number of corresponding positive ṫ’s. It is of interest that there can
also be an odd number of solutions as illustrated in Fig. 3.

For photon orbitswe find a simple polynomial equation for the corresponding radius
of the orbit

3Ξ2r4 + 6m
(
Λa2 − 3

)
r3 +

(
27m2 − 4Λa2q2 + 12q2

)
r2

−12m
(
a2 + 3q2

)
r + 12q2

(
a2 + q2

)
= 0. (44)

It turns out that regardless of the values of the parameters in the metric, the real roots
of the polynomial are always non-negative, barring circular photon orbits in the inner
region of the spacetime with r < 0. Moreover, there can always be either two or
none such circular orbits and, if they exist, each orbit separates two adjacent regions
admitting a different number of massive circular orbits, see Fig. 3.

In order to analyze general radial motion, we now establish an effective potential
taking advantage of the integrals of motion (28) and the normalization equation. We
easily find

ṫ = Ξ

r2Δr

[
− Ξ

(
a2Δr − (a2 + r2)2

)
E + aΞ

(
Δr − (a2 + r2)

)
L

−(a2 + r2)qκr
]
, (45)

φ̇ = Ξ

r2Δr

[
− aΞ

(
Δr − (a2 + r2)

)
E + Ξ

(
Δr − a2

)
L − aqκr

]
. (46)

123



  156 Page 14 of 22 J. Veselý , M. Žofka

Fig. 3 Angular velocity Ω obtained from (42) and the corresponding ṫ (in matching lines) as functions of
the radius for the spacetime {Λm2, a/m, q/m} = {−324, 1/30, 2/9} and a particle with κ = 25. Vertical
lines separate regions with different numbers of physical solutions indicated by bold numbers and given by
the requirement ṫ > 0 for a given Ω . Divergence of ṫ(r) signifies a photon orbit, which solves (44)

From here, we express ṙ as

1

2
(ṙ)2 = −V (r; E, L, κ), (47)
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Fig. 4 A comparison of two effective potentials in a spacetime with parameters {Λm2, a/m, q/m} =
{10−8, 75, 5} for two particles with the same E = 1 and L = 15 but different κ . The upper particle with a
greater κ can be in a stable orbit at r/m ≈ 26, the lower one in an unstable one at r/m ≈ 44

where V is the sought effective potential,

V (r; E, L, κ) = qκ

2r3

(
2Ξ

(
a2 + r2

)
E − 2ΞaL − qκr

)
− δ

Δr (r)

2r2

+ Ξ2

2r4

((
Δr (r) − (a2 + r2)

)
(aE − L)2 −

(
a2 + r2

)
r2E2 + r2L2

)
, (48)

here δ is the four-velocity norm. The latter case has already been thoroughly analyzed
in previous literature [27,28].

The turning points for a given particle are the roots of a sixth-degree polynomial,
barring analytical solutions in the general case. Expanding the potential near an unsta-
ble (d2V /dr2 < 0) circular (dV /dr = 0) orbit, we find that approaching particles will
get arbitrarily close to it in a finite time and they will wind ever closer exponentially.
Inspecting the potential, we find that stable photon orbits (if there are any in the given
spacetime) require

r <
4

3

q2

m
, (49)

while unstable orbits satisfy the opposite inequality, confirming the well-known fact
that photon orbits in the Schwarzschild and Kerr spacetimes are unstable [29]. As a
side note, κ seems to have a considerable effect on the stability of orbits, see Fig. 4,
where we consider two particles with the same integrals of motion but with different
charge-to-mass ratios in the same spacetime. The divergence of the effective potential
at r = 0 expelling any test particle from its vicinity is yet another manifestation of the
already-discussed repulsive gravity for naked singularities.
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To separate the potential, one can follow in the footsteps of [30]. V is quadratic in
E and (48) can be recast as

V = − Δr

2r2N 2
eq

(
E − W−

)(
E − W+

)
, (50)

where

W± = ΞN 2
eq

r2Δr

⎡
⎣(

aΞ
(
(a2 + r2) − Δr

)
L + κqr(a2 + r2)

)

±
√√√√r2Δr

(
(rΞL − κqa)2 − r2Δr

Ξ2N 2
eq

δ

) ⎤
⎦ (51)

and we use the lapse function

N 2 = − 1

gtt
= −gtt + (gtφ)2

gφφ

, (52)

which in the equatorial plane becomes

N 2
eq = r2Δr

Ξ2

1(
a2 + r2

)2 − a2Δr

. (53)

The denominator of the last fraction coincides with the equatorial form of (22), which
defines regions where closed timelike curves are present, and, therefore, the square of
the lapse function is always positive unless we are either in a non-stationary region
(where Δr < 0) or within a CTC region. For instance, there is a stationary region
around the singularity that contains CTC’s and the lapse function is thus negative
there. However, as proved in Sect. 4, the CTC region is always located below the inner
black-hole horizon and, thus, if we exclude observers able to see the singularity and
remain within the stationary region, the lapse function is well defined. Then, we have
two contenders for the title of the separated potential,W− ≤ W+, but only one of them
represents physical particles moving forwards in time. Using (45) and the definitions
above, we can further write

ṫ = (E − W+) + (E − W−)

2N 2
eq

, (54)

and hence with N 2
eq > 0 relation E ≥ W+ automatically implies E > W− and we

thus have both V ≤ 0 and sgn(ṫ) > 0, as required for physical particles. In case
E ≤ W− < W+, which would still yield the correct, negative sign of the potential, we
get unphysical sgn(ṫ) < 0, so we need to compare E to W+. To conclude, W+ is the
correct separated potential.
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Take note that in the part of the stationary area devoid of CTC’s, the square root
in W± is manifestly positive for massive particles (δ = −1) and non-negative for
photons (δ = 0). Moreover, if W+ = W−, it is impossible to satisfy E = W+, as
then ṫ = 0. That means that there are no turning points for equatorial photons with
L = 0. For Δr < 0, we have N 2

eq < 0 and the square root in W± is purely imaginary
for massive and massless particles alike, which means there are no turning points in
non-stationary regions.

To see that circular orbits and their stability can be determined using derivatives of
W+ instead of V , we first compute the first derivative of (50) and insert E = W+ to
obtain

dV

dr

∣∣∣∣
E=W+

= Δr

2r2N 2
eq

(
W+ − W−

)dW+
dr

. (55)

Apart from the horizons, the first derivative of W+ therefore vanishes if and only
if the particle follows a circular orbit. (Recall that considering E = W+ prohibits
W+ = W−.) Similarly, the second derivative yields

d2V

dr2

∣∣∣∣ E = W+
W ′+ = 0

= Δr

2r2N 2
eq

(
W+ − W−

)d2W+
dr2

, (56)

which means that for circular orbits not only does the second derivative ofW+ vanish
if V ′′ vanishes as well, but also that sgn(W ′′+) = sgn(V ′′). Expectedly, orbits located at
minima ofW+ are, therefore, stable and those at maxima are unstable. For a discussion
of stability of unrelated latitudinal motion, see, e.g., [31,32].

While the separated potential is more convenient for finding turning points, as it
does not have to be redrawn every time one considers a particle with different E , its
lengthy square root makes it less useful whenever derivatives are involved.

5.3 Radial motion along the axis of rotation

Due to the spacetime’s symmetries, electrogeodesic equations permit a purely radial
motion along the axis of rotation. The φ coordinate is degenerate on the axis and its
value is inconsequential, and the equation for θ̈ is trivial on the axis for initial θ̇ = 0.
We are left with two remaining equations of motion for t and r . Instead of solving
the system, we again examine the corresponding effective potential (the simpler case
of vanishing cosmological constant has been discussed in [33]). The situation here is
simpler than in the equatorial plane as L vanishes for particles bound to the axis and,
additionally, we can express ṫ directly from E

ṫ = Ξ

Δr

(
Ξρ2

0 (r)E − rqκ
)
, (57)

where
ρ2
0 (r) ≡ ρ2(r , θ ∈ {0, π}) = r2 + a2 . (58)
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Substituting into the normalization equation, we obtain, similarly as before,

1

2
(ṙ)2 = −V (r; E, κ) (59)

with

V (r; E, κ) = − 1

2ρ4
0 (r)

(
Ξρ2

0 (r)E − qκr
)2 − Δr (r)

2ρ2
0 (r)

δ. (60)

This time, unlike in the equatorial plane, there is no infinite potential barrier at r = 0
unless a = 0. The physical situation is different, as for rotating black holes of the Kerr
family there is no singularity on the axis in the used coordinates. Again, the potential
can be separated as

V = −Ξ2

2
(E − W−)(E − W+) (61)

with W− ≤ W+ satisfying

W±(r; κ) = 1

Ξρ2
0

(
qκr ±

√
−δΔrρ

2
0

)
. (62)

Following the same argument as in the equatorial plane, we again find that physical
particles travelling forward in time are governed by W+ and must satisfy E ≥ W+,
and that potentials V and W+ are equivalent not only when examining turning points,
but also static positions and their stability. Analogously to the equatorial plane, the
non-stationary regions with Δr < 0 contain no turning points of timelike particles
since W± are not real. Indeed, for Δr < 0 and δ = −1, (60) has no real roots.

Let us now analyze the stability of massive particles sitting at r = ±a. Even though
κ was irrelevant in the question of staticity, it turns out that it plays a crucial role for
the stability of these particles: we obtain

d2V

dr2

∣∣∣∣
r=±a

= 4a2 − q2

8a3

√
4a2 ∓ 4am + 3q2

d2W+
dr2

∣∣∣∣
r=±a

= 1

4a4

(
±2am + 2q2 ∓ qκ

√
4a2 ∓ 4am + 3q2

)
. (63)

Recall thatΞ > 0 implies 4a2 > q2, see (35). Therefore, the threshold κ for which
the particle stability changes is

κ±
thr = 2

(
am ± q2

)

q
√
4a2 ∓ 4am + 3q2

. (64)

For r = +a stable positions (in the minima of the potentials) require qκ < qκ+
thr

and unstable qκ > qκ+
thr. Curiously, for r = −a the inequalities are swapped and

stable positions require qκ > qκ−
thr, unstable qκ < qκ−

thr. The situation for r = a is
illustrated in terms of V in Fig. 5.
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Fig. 5 The effective potentials V in a spacetime with parameters {Λ a2,m/a, q/a} =
{−12/49, 20/21, 4/7} allowing for static particles at r = ±a for three particles differing by their charge and
E . κ+

thr = 47/
√
129 ≈ 4.14, given by (64), is the charge-to-mass ratio of the middle particle with E ≈ 1.88

and it represents a marginally stable static position. The upper particle with lower qκ and E ≈ 1.75 is in a
stable static position and the lower particle with higher qκ and E ≈ 2.01 is in an unstable static position

Take note that for photons bound to the axis there are no turning points since the
effective potential V is constant, V = −Ξ2E2/2 < 0. Also note that it is impossible
for these photons to have E = 0, as a quick inspection of (57) reveals that these photons
would be frozen in time. From (57) it also follows that in stationary areas, sgn(ṫ) > 0
actually requires E > 0. In the limit of a = 0 the potential leads to ṙ = ±E , as is
known for the Schwarzschild–anti-de Sitter spacetime [34]. For the radial coordinate
velocity of a massless particle we obtain a remarkably simple formula

dr

dt
= ± Δr (r)

Ξρ2
0 (r)

, (65)

which holds even for hypothetical charged massless particles because the particle’s
charge does not enter the normalization equation. In the general case dr/dt cannot
be integrated to obtain r = r(t) in terms of elementary functions. However, should
we take interest in null geodesics in the neighbourhood of a given horizon, we can
Taylor-expand all the functions appearing in (65) in terms of r − Rm , where Rm is the
position of the horizon of multiplicity m. The resulting formula can be integrated to
yield an explicit dependance of radius, r , on coordinate time, t . For instance, for the
triple horizon located at r = R3 we find

r ≈ ± 1√∓2ζ3(R3) (t − t0)
+ R3, (66)

with

ζ3(R3) = 2

3

Λ2R3(
ΛR2

3 − 1
) (
5ΛR2

3 − 3
) < 0. (67)
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The outer sign reflects whether the photon is above the horizon or below it while the
inner sign distinguishes between photons approaching the horizon and receding from
it.

5.4 The turnaround radius

Let us nowmention the notion of the so-called turnaround, or static, radius as discussed
in, e.g., [35,36]. This surface is well defined for spherically symmetric spacetimes,
where radial geodesics only cross it either inwards or outwards but can never go back,
and it has only been generalized for small deviations in [37]. The problem in the present
case is that, generally, radial trajectories are not geodesics. The only exception are paths
along the axis where a geodesic can be written in the required form r̈ − f (r) = 0.
Indeed, differentiating (59) with respect to the proper time, dividing by ṙ , and setting
κ = 0 yields

r̈ + 1

2

d

dr

[
Δr

r2 + a2

]
= 0. (68)

Since the numerator of f (r) is a polynomial of degree 5 independent of the test
particle’s energy E , there are up to 5 different turnaround radii for particles moving
along the axis. It is of interest that although the turnaround radii work locally, pushing
away nearby originating geodesics, it is still possible for a geodesic to cross it in one
direction, travel to a distant turnaround point given by E = W+ with W+ of (62),
and then cross the local turnaround radius in the opposite direction than before. This
suggests that the notion of turnaround radius is a local concept.

The closest analogof general radial geodesics are arguablygeodesics of zero angular
momentum.Let us explore the situation in the equatorial plane. Proceeding from (47) in
analogy with the axial case, we again have an equation of the form r̈ − f (r , E) = 0.
This time, however, f depends on the energy so that the turnaround radius is not
common to all test particles. The situation could still be saved if the dependance on
E vanished for some r where the remaining term independent of E would vanish
as well so that f (r , E) would factor out. This however, is not the case apart from a
special combination of the 4 spacetime parameters (a 3-dimensional subspace). Put
differently, there is no particular turnaround radius shared by all members of the
KN(a)dS spacetime family.

6 Conclusions

In this paper we reviewed the properties of the most general electrovacuum axially
symmetric black-hole spacetime, the Kerr–Newman–(anti-)de Sitter solution of the
Einstein–Maxwell equations. This is an exact solution that can include even a horizon
of degree three arising due to the merging of three originally separate single horizons.
The structure of the spacetime ismore varied than in the case of its simpler cousins and,
in this paper, we presented the extreme cases. One can naturally ask what happens if a
particle is dropped inside the black hole, perturbing the parameters of the spacetime.
We discussed how the horizons split or merge during such a process.We studied closed
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timelike curves and the regionswhere they can occur. Ourmain focus, however, was on
electrogeodesics.We proceeded from the integrals of motion and investigated themost
interesting trajectories, namely the positions of static test particles and general paths in
the equatorial plane and along the axis. To facilitate the discussion, we introduced an
effective potential, which enables us to distinguish the allowed and forbidden regions
formotion of specific charged test particles. Lastly, we briefly discussed the turnaround
radii in this spacetime.

Thus far, ourwork has only involved test particlemotion, that is, the paths of charged
particles moving in the gravitational and electromagnetic fields generated purely by
the black hole. It is, however, clear that the particle generates its own fields as well.
On a curved background, even the electrostatic field of a point particle influences its
motion through a non-vanishing self force. In our future work, we thus plan to include
the back reaction of the Maxwell field generated by the test particle on its very motion
as well.
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